Патент на антенны

биконическая антенна

Использование: широкодиапазонные антенны ОВЧ-УВЧ-диапазона, например, для судовых систем радиосвязи. Сущность изобретения: в биконической антенне шунты, соединяющие кромки основания конусов, состоят из отрезков проводников, выполненных из двух равных частей. Верхние части смещены относительно нижних на угол 360/2N, где N — число шунтов, и соединены между собой проводящими перемычками, расположенными в плоскости, проходящей через общую вершину конусов перпендикулярно их оси. 4 ил.

Рисунки к патенту РФ 2022428

Изобретение относится к антенной технике, а именно к широкодиапазонным антеннам.

Известны дипольные антенны, состоящие из цилиндрических проводников (см. , например, Фрадина А. З. , Антенно-фидерные устройства, М.: Связь. 1977). Эти антенны имеют круговую диаграмму направленности в плоскости Н в широком диапазоне частот, но при этом узкополосны по согласованию с фидером.

Известны также шунтовые вибраторы, два плеча которых шунтированы третьим проводником. Эти антенны имеют круговые диаграммы направленности в плоскости Н, шунт антенны обеспечивает грозозащиту, повышает электромагнитную совместимость, но при этом коэффициент перекрытия шунтовых вибраторов по частоте не превышает 3:1.

Известна биконическая антенна, которая состоит из двух металлических конусов, соединенных вершинами.

Указанная антенна имеет удовлетворительные характеристики в широком диапазоне частот ( 6:1, ДН в плоскости Н — круговая, КБВ > 0,3). Но биконическая антенна имеет большие объемные габариты (продольные размеры около 0,3 max), не имеет грозозащиты, верхний конус держится на изоляторе, что затрудняет выполнение механически прочной конструкции.

Для уменьшения габаритов примерно на 20%, обеспечения грозозащиты, повышения ЭМС и прочности конструкции биконус часто используют с шунтом. При этом шунт не портит согласования на более высоких частотах, но его присутствие — искажает ДН в плоскости Н при увеличении частоты, что ограничивает рабочий диапазон антенны до значений 3:1.

Известна также биконическая антенна, выбранная в качестве прототипа, содержащая N шунтов, расположенных между основаниями конусов по окружности с угловым интервалом = параллельно оси вибратора.

Недостатком такой конструкции является возрастание суммарной проводимости шунтов, которое приводит к ухудшению рабочего диапазона частот. Требуемое уменьшение поперечного сечения шунта не всегда возможно по конструктивным соображениям.

Цель изобретения — расширение рабочего диапазона частот.

Это достигается тем, что в биконической антенне, содержащий N шунтов, расположенных между основаниями конусов по окружности с угловым интервалом = параллельно оси вибратора, каждый из N шунтов разделен на две части, при этом отрезки шунтов, соединенные с верхним конусом, смещены вокруг оси антенны на угол =/2 относительно отрезков шунтов, соединенных с нижним конусом.

Сопоставительный анализ с прототипом показывает, что предложенная антенна отличается тем, что каждый из N шунтов разделен на две части, кроме того, отрезки шунтов верхней части смещены на угол =/2, относительно отрезков шунтов нижней части. Таким образом, предложенная антенна соответствует критерию «новизна».

Указанные признаки известны, но свойства, которые благодаря им приобретает изобретение, приводят к расширению верхней части рабочего диапазона, что обеспечивает получение положительного эффекта и дает основание сделать вывод о соответствии технического решения критерию «существенные отличия».

Разделение каждого из N шунтов на две части и расположение этих 2N частей равномерно по окружности оказывается эквивалентным по своему влиянию на диаграмму направленности в плоскости Н увеличению числа шунтов в 2 раза и, как следствие, расширению рабочего диапазона частот в два раза.

На фиг. 1 схематически изображена известная антенна; на фиг.2 — предложенная антенна; на фиг. 3 — экспериментальные диаграммы направленности известной антенны в горизонтальной плоскости; на фиг.4 — экспериментальные диаграммы направленности предложенной антенны тех же габаритов.

Верхнее 1 и нижнее 2 плечи антенны (см. фиг.1) выполнены в виде одинаковых металлических конусов, ориентированных вершинами друг к другу. Основания конусов 1 и 2 соединены N шунтами 3, расположенными по окружности с угловым интервалом = параллельно оси вибратора. К вершине конусов 1 и 2 подключен генератор 4.

В предложенной антенне (см.фиг.2) каждый шунт разделен на две части 5 и 6 и соединен проводящими перемычками 7, при этом отрезки шунтов 5 смещены вокруг оси антенны на угол =/2 относительно отрезков шунтов 6.

Работа предложенной и известной антенн была осуществлена на макетах, экспериментальные данные следующие.

Геометрические параметры испытуемых антенн были одинаковы и соответственно равны:
Угол при вершине конус o 90 о
Диаметр основания конуса D 375 мм
Высота антенны 2h 375 мм
Количество шунтов 3шт
Диаметр шунта 60 мм
Ширина кольца 6мм
На фиг. 3 приведены ДН в плоскости Н известной антенны в диапазоне 233-1200 МГц. В низкочастотной части диапазона антенна имеет круговую диаграмму направленности. При повышении частоты, начиная с f = 800 МГц диаграмма направленности становится трехлепестковой с Еmin = = 3,2 .

При этом предложенная антенна разделена на две части (допустим, на равные части).

Очевидно, что диаграмма направленности в плоскости Н является результатом суперпозиции ДН верхней и нижней частей антенны. У известной антенны верхняя и нижняя части симметричны относительно поперечной плоскости, их индивидуальные диаграммы направленности одинаковы и совпадают с суммарной диаграммой направленности, приведенной на фиг.3.

Если сместить нижнюю половину антенны вокруг оси на угол =/2, то на частотах f 800 МГц минимумы диаграммы направленности верхней части совпадут с максимумами диаграммы направленности нижней части, что в сумме дает равномерную диаграмму направленности в плоскости Н в более широком диапазоне, чем у известной антенны.

О том, что этот положительный эффект реализуется на практике, свидетельствуют экспериментальные данные, приведенные на фиг.4. Равномерная ДН в плоскости Н у предлагаемой антенны сохраняется в диапазоне 193-1200 МГц (КБ > 0,3, начиная с частоты 193 МГц и выше). Отношение крайних частот рабочего диапазона предложенной антенны
= > 6,2 .

При одинаковых размерах известной и предложенной антенн рабочий диапазон расширен не только в сторону высоких, но и в сторону низких частот. Сдвиг в сторону низких частот в предлагаемом устройстве с частоты 233 МГц до 193 МГЦ обусловлен удлинением шунтов, т.е. за счет увеличения их индуктивности.

Так как минимальные размеры антенны определяются максимальной длиной волны (max), то при одинаковых значениях max предложенная антенна может быть выполнена в = 1.21 раза (т.е. на 17,5%) меньше по габаритам, чем известная антенна.

Таким образом, предложенное устройство по сравнению с известным имеет почти в 2 раза более широкий диапазон и на 18% меньшие габариты.

Положительный эффект заключается в том, что предложенная антенна может заменить на подвижном объекте две-три антенны. Кроме того, одну антенну легче разместить на подвижном объекте и не ухудшить ее характеристики, чем две или три антенны.

Благодаря высоким электрическим характеристикам и малым размерам антенна может найти широкое применение на судах в качестве многоцелевой совмещенной антенны ОВЧ-УВЧ-диапазона для радиосвязи с другими судами и самолетами.

БИКОНИЧЕСКАЯ АНТЕННА, содержащая N шунтов, выполненных в виде отрезков проводника, соединяющих кромки оснований конусов, отличающаяся тем, что, с целью расширения рабочего диапазона частот, отрезки проводника выполнены из двух равных частей, смещенных одна относительно другой на угол = 360 / 2N , расположенных с равным угловым смещением вокруг оси конусов и соединенных одна с другой посредством введенных проводящих перемычек, размещенных в плоскости, проходящей через вершину конусов перпендикулярно их оси.

www.freepatent.ru

мультипольная антенна (варианты)

Изобретение относится к антенной и микрополосковой технике. Технический результат — повышение кросс-поляризационных характеристик при достижении вращающейся круговой или эллиптической поляризации и равномерной диаграммы направленности в широкой полосе частот, а также габаритных размерах антенны, значительно меньших максимальной рабочей длины волны. Мультипольная антенна, содержащая диэлектрическую подложку, на которой расположены симметрично по окружности, по меньшей мере, четыре идентичные полуволновые вибратора, каждый из которых выполнен в виде резонансного отрезка периодической микрополосковой линии с шириной в центре, равной четверти средней длины волны и линейно уменьшающейся к периферийной области. 2 н. и 4 з.п. ф-лы, 6 ил.

Рисунки к патенту РФ 2514094

Изобретение относится к антенной и микрополосковой технике и может быть использовано в устройствах для идентификации радиочастотных меток (RFID — RadioFrequency IDentification), а также в радиометрии и аппаратуре связи.

Известны микрополосковые и полосковые антенны, различающиеся по конфигурации излучающего элемента — прямоугольные, дисковые, кольцевые, эллиптические, треугольные и др., выполненные на диэлектрических изолированных, экранированных, подвешенных и многослойных подложках, а также в виде щелей в металлических пластинах [Панченко Б.А., Нефедов Е.И. Микрополосковые антенны.М.: Радио и связь, 1986; Электродинамический расчет характеристик полосковых антенн. / Б.А. Панченко, С.Т. Князев и др. М.: Радио и связь, 2002; Wong K.-L. Compact and Broadband Microstrip Antennas. J.Wiley&Sons, Inc., 2002]. К недостаткам таких антенн и излучателей относится их узкополосность, определяемая резонансным режимом работы, а также примерное равенство габаритных размеров антенны и рабочей длины волны.

Наиболее близкими к предлагаемому изобретению являются плоские логопериодические антенны с различной формой излучающих структур, обладающие линейной поляризацией. В частности, известна микрополосковая антенна, содержащая диэлектрическую подложку с расположенным на ней импедансным проводником, выполненным в виде вписанной в равнобедренный треугольник периодической микрополосковой линии, начало и середины проводников которой соединены прямолинейным микрополосковым проводником, обладающей коэффициентом замедления n и длиной, не превышающей макс/n, где макс — максимальная длина волны рабочего диапазона, импедансный проводник выполнен в виде зигзаг-линии (по первому варианту) или в виде меандр-линии (по второму варианту) [Патент РФ на полезную модель № 68188 Микрополосковая антенна. // А.А. Елизаров, Д.С. Кухаренко. Опубл. в Бюл. № 31, 2007 — прототип].

Такие антенны обладают осевым излучением с вращающейся круговой или эллиптической поляризацией, которая в дальней зоне излучения вырождается в линейную, что ухудшает кросс-поляризационные свойства таких структур и затрудняет возможности их применения для радиочастотной идентификации в диапазоне 866-915 МГц. Кроме того, для устойчивого считывания радиочастотных меток при наличии вблизи них металлических предметов и поверхностей, диаграмма направленности должна быть равномерной и не содержать изрезанностей.

Технической задачей, на решение которой направлено заявляемое изобретение, является создание малогабаритной широкополосной антенны с высокими кросс-поляризационными характеристиками и равномерной диаграммой направленности.

Поставленная техническая задача решается тем, что согласно предложенному изобретению мультипольная антенна по первому варианту содержит диэлектрическую подложку, на которой расположены симметрично по окружности, по меньшей мере, четыре идентичные полуволновые вибратора, каждый из которых выполнен в виде резонансного отрезка периодической микрополосковой линии с шириной в центре, равной четверти средней длины волны и линейно уменьшающейся к периферийной области.

Поставленная техническая задача решается также тем, что согласно предложенному изобретению мультипольная антенна по второму варианту содержит металлическую пластину, в которой вырезаны симметрично по окружности, по меньшей мере, четыре идентичные полуволновые вибратора, каждый из которых выполнен в виде резонансного отрезка периодической микрополосковой линии с шириной в центре, равной четверти средней длины волны и линейно уменьшающейся к периферийной области.

Кроме того, мультипольная антенна по первому и второму вариантам выполнения дополнительно характеризуется тем, что каждый резонансный отрезок периодической микрополосковой линии выполнен в виде меандр-линии или в виде зигзаг-линии.

Техническим результатом, достигаемым при осуществлении всей совокупности заявляемых существенных признаков, является повышение кросс-поляризационных характеристик при достижении вращающейся круговой или эллиптической поляризации и равномерной диаграммы направленности в широкой полосе частот, а также габаритных размерах антенны, значительно меньших максимальной рабочей длины волны.

Предлагаемое изобретение иллюстрируется рисунками, где

на фиг.1 показана конструкция и топология антенн-квадруполей на основе периодических резонансных отрезков микрополосковых линий меандр (фиг.1а) и зигзаг (фиг.1б) (обозначенных цифрами 1), выполненных на диэлектрических подложках из поликора с относительной диэлектрической проницаемостью 9,8 и габаритными размерами 200×200 (обозначенных цифрой 2);

на фиг.2 показаны варианты щелевых антенн на основе периодических резонансных отрезков микрополосковых линий меандр (фиг.2а) и зигзаг (фиг.2б), вырезанных в металлических пластинах с теми же габаритными размерами. Диапазон рабочих частот предлагаемых вариантов антенн 866-915 МГц;

на фиг.3 и 4 показаны результаты расчета комплексного коэффициента S11 и коэффициента стоячей волны напряжения (КСВН) от частоты соответственно для микрополосковой меандровой антенны (фиг.1а), полученные численно с помощью программных средств AWR Design Environment v9.0;

на фиг.5 и 6 показаны диаграммы направленности для микрополосковой меандровой антенны (фиг.1а), в плоскостях xz и хy соответственно, рассчитанные для случаев левосторонней и правосторонней круговой поляризации.

Работа мультипольной антенны основана на интерференции колебаний полуволновых вибраторов, синфазно возбуждаемых с помощью коаксиальной линии в случае микрополосковых проводников или с помощью рупора в случае щелевых линий. Также работа мультипольной антенны осуществляется на использовании в ее конструкции отрезков периодических микрополосковых или щелевых линий типа «зигзаг» или «меандр», обладающих замедлением фазовой скорости волны. Экспериментально полученные дисперсионные характеристики для микрополосковой зигзаг-линии показали достаточно равномерное изменение коэффициента замедления в рабочем диапазоне частот антенны от 4 до 6, а для меандр-линии — от 6 до 8. Это позволяет прямо пропорционально величине коэффициента замедления уменьшать геометрические размеры таких структур при сохранении их прежней электрической длины [Елизаров А.А., Пчельников Ю.Н. Радиоволновые элементы технологических приборов и устройств с использованием электродинамических замедляющих систем. М., Радио и связь, 2002]. При этом максимальные длины волн антенн будут определяться их максимальной электрической длиной, а минимальные — точностью изготовления структур вблизи точек возбуждения.

Как известно, при возбуждении периодической структуры возможно два режима работы: в первом — электромагнитная волна сосредотачивается вблизи структуры без излучения, а во втором — наблюдается излучение электромагнитных волн в окружающее пространство [Елизаров А.А., Пчельников Ю.Н. Радиоволновые элементы технологических приборов и устройств с использованием электродинамических замедляющих систем. М., Радио и связь, 2002]. Режим работы периодической структуры определяется соотношением между коэффициентом фазы питающей волны, распространяющейся вдоль структуры, и периодом структуры. При малом периоде по сравнению с длиной волны излучение отсутствует, а при их совпадении происходит интенсивное резонансное излучение. В этом случае энергия питающей волны на конечном участке структуры практически полностью преобразуется в энергию излученных электромагнитных волн, а возбуждение структуры за областью излучения резко уменьшается, что не нарушает режим работы антенны. Период структуры у предложенных вариантов антенн является переменным, постепенно увеличиваясь в направлении от точки возбуждения. Это позволяет объяснить отсечку тока в периодической системе наличием для любой волны конечной области, для которой реализуется режим резонансного излучения. Таким образом, предлагаемые антенны являются частотно-независимыми, поскольку имея конечные размеры, сохраняют все свойства бесконечных периодических структур.

Возможность коррекции изрезанности диаграммы направленности мультипольной антенны достигается за счет снижения потерь на отражение волн, возникающих при согласовании вибраторов с возбуждающими их линиями и с внешним воздушным пространством, волновое сопротивление которого составляет 120 :=376,7 (Ом). Для представленных на фиг.1а и 1б мультипольных антенн волновое сопротивление вибраторов в точках возбуждения должно составлять 50 или 75 Ом, что определяется волновым сопротивлением стандартных коаксиальных линий. Для мультипольных антенн с щелевыми вибраторами, представленных на фиг.2а и 2б, волновое сопротивление возбуждающего их рупора еще меньше 20-60 Ом. Если при этом ширина проводников или щелей, образующих вибраторы антенны, остается постоянной, наблюдается отражение волн, связанное с разницей их волновых сопротивлений и воздушного пространства. Поэтому в предлагаемых вариантах мультипольной антенны для увеличения волнового сопротивления вибраторов по длине и снижения потерь на отражение, ширина микрополоскового проводника или щели выполняется линейно уменьшающейся от точек возбуждения в центре — к периферийной области. Такая зависимость сопротивления проводника R от изменения ее ширины W (без учета дисперсии), близка к линейной и может быть вычислена, например, для зигзаг-линии, по формуле: R= /(WcosФ), где — удельное сопротивление материала проводника (для меди 0,0175(Ом·мм 2 /м)), Ф — угол, образуемый проводником зигзаг-линии по направлению к продольной оси [Патент РФ на изобретение № 2 369 949. Рупорная антенна. // А.А. Елизаров. Опубл. в Бюл. № 28, 2009].

Возможность достижения поставленной цели подтверждается также результатами численного эксперимента квадрупольной меандровой антенны (фиг.1а), полученными с помощью программных средств AWR Design Environment v9.0. Антенна выполнена на подложке из поликора с относительной диэлектрической проницаемостью 9,8, габаритными размерами 200×200 и предназначена для идентификации радиочастотных меток на частотах 866-915 МГц. На фиг.3 показана зависимость комплексного коэффициента S11 от частоты, свидетельствующая о наличии минимумов отражения на резонансных частотах 866 и 915 МГц. Величина коэффициента стоячей волны при этом, как следует из графика на фиг.4, не превышает 1,8, что подтверждает хорошее согласование. Далее представлены диаграммы направленности моделируемой антенны для правосторонней и левосторонней круговой поляризации для плоскости xz (фиг.5) и плоскости хy (фиг.6). Полученные диаграммы свидетельствуют о наличии у данной антенны ярко выраженной левосторонней круговой поляризации. Диаграммы излучения достаточно равномерны и не обладают какой-либо изрезанностью.

Достоинством предложенного изобретения является возможность достижения у мультипольных антенн вращающейся круговой или эллиптической поляризации и равномерной диаграммы направленности в широкой полосе частот, что обеспечивается за счет возможности согласования вибраторов с возбуждающими их линиями и внешним воздушным пространством, при габаритных размерах антенны значительно меньших максимальной рабочей длины волны.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Мультипольная антенна, содержащая диэлектрическую подложку, на которой расположены симметрично по окружности, по меньшей мере, четыре идентичные полуволновые вибратора, каждый из которых выполнен в виде резонансного отрезка периодической микрополосковой линии с шириной в центре, равной четверти средней длины волны и линейно уменьшающейся к периферийной области.

2. Мультипольная антенна по п.1, отличающаяся тем, что каждый резонансный отрезок периодической микрополосковой линии выполнен в виде меандр-линии.

3. Мультипольная антенна по п.1, отличающаяся тем, что каждый резонансный отрезок периодической микрополосковой линии выполнен в виде зигзаг-линии.

4. Мультипольная антенна, содержащая металлическую пластину, в которой вырезаны симметрично по окружности, по меньшей мере, четыре идентичные полуволновые вибратора, каждый из которых выполнен в виде резонансного отрезка периодической микрополосковой линии с шириной в центре, равной четверти средней длины волны и линейно уменьшающейся к периферийной области.

5. Мультипольная антенна по п.4, отличающаяся тем, что каждый резонансный отрезок периодической микрополосковой линии выполнен в виде меандр-линии.

6. Мультипольная антенна по п.4, отличающаяся тем, что каждый резонансный отрезок периодической микрополосковой линии выполнен в виде зигзаг-линии.

Патент на изобретение антенны Федосова

ПЕРЕСТРАИВАЕМАЯ РЕЗОНАНСНАЯ АНТЕННА

С СОГЛАСУЮЩИМ УСТРОЙСТВОМ Область техники

Изобретение относится к антенной технике и может быть использовано в малогабаритной приемопередающей технике для ведения радиосвязи, навигации, и как отдельная антенна, предназначенная для установки на стационарных и подвижных объектах связи.

Предшествующий уровень техники

В настоящее время известно, что размеры эффективных современных антенн гектометрового и декаметрового диапазона радиоволн составляют десятки и сотни метров, что существенно уменьшает их использование в подвижной радиосвязи и увеличивает время стационарной установки антенн для осуществления радиосвязи, такие типы антенн сдерживают развитие и применение как самой гектометровой и декаметровой радиосвязи так и конструкций приемопередающих устройств в области длинноволновой, средневолновой и коротковолновой радиосвязи. Этот диапазон радиоволн представляется наиболее привлекательным для осуществления дальней радиосвязи из-за особенностей распространения длинных, средних и коротких радиоволн в пространстве.

Известна из патента РФ 2344433 конструкция малогабаритной ферритовой антенны с ферромагнитным стержнем и размещенными на нем приемными катушками.

Недостатком известной антенны является то, что ее можно использовать только в качестве приемной антенны, так как в режиме подачи радиосигнала на ферритовую антенну, ферромагнитный материал, насыщаясь, приводит к искажениям передающего сигнала.

Известна из патента РФ N° 2324267 широкополосная несимметричная вибраторная антенна, содержащая вертикальный вибратор, присоединенный к внутреннему проводнику коаксиального кабеля, согласующее устройство, включающее первую и вторую индуктивности, катушку индуктивности, первый и второй резисторы, а также излучатель с круговой диаграммой направленности в горизонтальной плоскости.

Указанная выше несимметричная вибраторная антенна обладает недостатком: высота вертикального прямоугольного вибратора составляет 0,038 ?, где ? — наибольшая длина волны рабочего диапазона частот, что на частоте 1 ,5 МГц составляет 7,6 м. Учитывая плоскую прямоугольную конструкцию антенны, можно сделать выводы что использование и применение данной конструкции в радиодиапазонах ДВ и СВ в передвижном варианте технически сложно, а в большинстве случаев невозможно.

Известна из патента US 3267476 антенна, которая содержит вибратор в виде 1D полуволнового штыря, согласующий трансформатор на незамкнутом магнитопроводе, вторичная обмотка которого подключена к штырю, а на первичную подается питание. Однако эта антенна не обладает сверхмалогабаритными размерами. Подобная антенна может применяться в качестве мобильной только в диапазоне ультракоротких волн. Применение такой антенны в качестве мобильной в диапазоне коротких, средних и длинных волн невозможно в силу ее огромных размеров.

Наиболее близким по технической сущности к заявляемому устройству является вибраторная антенна по патенту RU N° 2413344. Эта антенна содержит вибратор в виде 2D или 3D проводящего тела, согласующий трансформатор на незамкнутом магнитопроводе, вторичная обмотка которого подключена к вибратору, а на первичную подается питание. Эта антенна имеет очень малые габариты и может использоваться в мобильной радиосвязи, однако она обладает рядом недостатков, а именно:

— имеет очень узкую полосу рабочих частот и не может перестраиваться в требуемом диапазоне частот;

— сложно настраивается на нужную частоту при изготовлении, что затрудняет ее массовое производство;

подобная конструкция антенны может эффективно использоваться только для излучения сигналов портативных радиостанций небольшой мощности 1-5 Вт, поскольку при подаче сигнала большей мощности ферритовые стержни, из которых выполняется магнитопровод, входят в магнитное насыщение и нагреваются, что не позволяет использовать эти антенны для передачи мощностей в несколько десятков и сотен Ватт, что особенно требуется для связи на транспортных средствах. Раскрытие изобретения

В основу изобретения поставлена задача устранения вышеуказанных недостатков и создания антенны, обеспечивающей возможность перестроения рабочей частоты антенны в достаточно широком диапазоне, увеличение мощности передачи при сохранении ее малых габаритных размеров для расширения функциональных возможностей радиоаппаратуры для мобильных систем ДВ, СВ, KB радиосвязи. Поставленная задача решается тем, что в антенне, содержащей согласующее устройство в виде трансформатора, состоящего из первичной и вторичной обмотки, незамкнутого магнитопровода, а также вибратора в виде плоского или объемного проводящего тела, находящегося в магнитном поле трансформатора и подключенного к его вторичной обмотке, согласно заявляемому изобретению, согласующий трансформатор выполнен с изменяемым коэффициентом трансформации таким образом, что вторичная катушка трансформатора имеет степень свободы относительно магнитопровода или первичной катушки и механизм ручного или автоматического перемещения магнитопровода и/ или катушек.

Предлагаемая антенна состоит из вибратора — излучающего элемента, представляющего 2D — плоское или 3D — объемное проводящее тело, имеющее электрическую емкость. Антенна имеет в своем составе согласующий трансформатор с изменяемым коэффициентом трансформации в виде первичной и вторичной обмоток и незамкнутого магнитопровода. Трансформатор расположен таким образом, чтобы магнитное поле трансформатора выходило за пределы трансформатора и охватывало близлежащие к нему элементы конструкции антенны, а именно, объемный или выполненный в плоскости вибратор. Магнитное поле трансформатора — это достаточно быстро убывающее по своему значению поле, фактически сосредоточенное в пространстве, не превышающем нескольких единиц линейных размеров самого трансформатора, как правило, этот размер пространства менее 1 % длины волны излучаемой антенной.

Кроме того, согласно заявляемому изобретению, магнитопровод согласующего устройства антенны может быть выполнен из смеси частиц ферромагнитного материала и немагнитного связующего вещества.

Краткое описание чертежей

Изобретение поясняется чертежами, где на Фиг. 1 представлена эквивалентная электрическая схема антенны, на Фиг. 2 изображена конструктивная схема предлагаемой резонансной антенны, на Фиг. 3 представлена иллюстрация антенны в разрезе, на Фиг. 4 изображен ее внешний вид, на Фиг. 5 изображена мобильная антенна в разрезе, выполненная в корпусе автомобильного бокса для размещения на крыше автомобиля, на Фиг.6 дана иллюстрация варианта исполнения антенны с электромеханической настройкой в разрезе.

Антенна на Фиг. 3 и 4 состоит из вибратора и трансформатора.

Вибратор 1 любой формы 2D или 3D, например, на Фиг.2 цилиндр, который может быть выполнен из любого электрически проводящего материала. В случае автомобильного варианта антенны вибратором могут быть расположенные на стенке бокса плоские проводящие элементы из фольги, Фиг. 4. Трансформатор выполнен на незамкнутом магнитопроводе 2 и содержит катушки индуктивности в виде первичной 3 и вторичной 4 обмоток этого трансформатора на каркасе 6. Вибратор 1 , выполненный из фольги размещенной на каркасе 6 электрически присоединен к вторичной обмотке 4 трансформатора и находится в магнитном поле трансформатора. Питание антенны осуществляется через контакты А и В первичной обмотки трансформатора 3 стандартным образом от кабеля или непосредственно от антенного разъема радиопередающего устройства через любое соединительное устройство 5. Второй контакт вторичной обмотки трансформатора С на фиг. 1 подсоединяется к общему проводу либо к контакту первичной обмотки.

Изменяемый коэффициент трансформации согласующего трансформатора обеспечивается подвижным магнитопроводом. Механизм ручного перемещения и фиксации магнитопровода относительно вторичной катушки выполнен в виде настроечной ручки 7, которая может перемещаться вверх и вниз вдоль корпуса антенны 8 и к которой крепится магнитопровод. На корпусе антенны может быть нанесена шкала диапазона частот 9, а местоположение настроечной ручки указывает текущую частоту настройки резонансной антенны. Настроечная ручка плотно прилегает к корпусу антенны и фиксируется в выбранном положении с помощью сил трения и защелки 10.

Антенна с согласующим устройством работает следующим образом.

При подаче сигнала с соединительного устройства 5 на первичную обмотку 3 трансформатора в ней возникает магнитное поле, которое индуцирует магнитное поле во вторичной катушке 4 и незамкнутом магнитопроводе 2. Вокруг трансформатора возникает магнитное поле, вектор магнитной индукции которого направлен вдоль магнитопровода. Электрическое поле, вектор напряженности которого направлен перпендикулярно поверхности вибратора 1 , возникает из-за подачи на него высокого напряжения со вторичной повышающей обмотки 4 трансформатора, который электрически соединен с вибратором 1. Исходя из того, что вибратор 1 находится в зоне действия магнитного поля трансформатора таким образом, что угол между вектором магнитной индукции и вектором напряженности электрического поля, возникающего на «излучающем элементе», близок к 90°, то вблизи вибратора возникают условия, достаточные для формирования радиоволн. Магнитопровод сделан подвижным вдоль оси вторичной катушки. Поскольку данная антенна резонансная и представляет собой открытый колебательный контур, то изменение положения магнитопровода вдоль оси вторичной обмотки меняет индуктивность этого контура и перестраивает антенну на другую частоту. Это позволяет перестраивать частоту антенны в диапазоне 10-20% при КСВ не более 1 ,2.

Конструкция механизма перемещения и фиксации магнитопровода или катушек может быть выполнена различными способами, в том числе и в автоматическом варианте исполнения, например, с помощью двигателя линейного перемещения, расположенного в антенне на оси магнитопровода.

На Фиг. 6 изображена в разрезе конструкция антенны с электромеханическим механизмом регулировки положения магнитопровода с использованием обычного электродвигателя. Конструкционные элементы антенны монтируют на трех каркасах. Во внутреннем каркасе И , выполненном в виде трубы, располагают ферромагнитный магнитопровод 2. На среднем каркасе 8 монтируют обмотки трансформатора 3, 4 и излучающий вибратор 1. Перемещение магнитопровода вместе с внутренним каркасом относительно обмоток трансформатора осуществляют с помощью электродвигателя 16 и редуктора 15. Электродвигатель через редуктор приводит во вращение винт 12. Винт, вкручиваясь или выкручиваясь из болта 13, приводит в вертикальное перемещение каркас 1 1 с магнитопроводом 2. Направляющие 14 обеспечивают фиксацию каркаса 1 1 относительно оси вращения винта 12. Для изменения рабочей частоты антенны к электродвигателю подают электрическое питание, от полярности которого зависит направление его вращения. В этот момент происходит перестройка резонансной частоты антенны вверх или вниз.

Известны различные магнитопроводы для согласующих устройств. Все они выполняются из ферромагнитных материалов — ферритов, трансформаторной стали, фольги аморфного железа. Использование ферритовых магнитопроводов, обладающих хорошими частотными характеристиками в согласующем устройстве малогабаритных антенн, при подаче большой мощности сигнала в условиях резонанса приводит к магнитному насыщению ферромагнитного материала, нагреванию и потерям.

Для увеличения мощности излучаемого сигнала при сохранении габаритных размеров антенн используют композитный магнитопровод, представляющий собой не цельный магнитный материал, а смесь частиц магнитного материала и немагнитного связующего вещества, например, полимерного клея и ферритового порошка, что приводит к тому, что насыщение магнитного материала достигается при больших мощностях сигнала, подаваемого в антенну.

Изобретение может быть реализовано промышленным способом с использованием известных технических средств, технологий и материалов.

Данное изобретение существенно расширяет диапазон рабочих частот, дает значительное увеличение мощности излучения для малогабаритных резонансных антенн и упрощает настройку антенн при их промышленном изготовлении.

www.433175.ru

Смотрите так же:

  • Правила дифференцирования с примерами Правила дифференцирования с примерами На этом занятии мы будем учиться применять формулы и правила дифференцирования. Примеры. Найти производные функций. 1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Применяем правило I, формулы 4, 2 и 1. […]
  • Чередование гласных в корне слова правило таблица В тоге и сандалях Вместе с тем некоторые корни не могут встречаться в языке без словообразовательных приставок и суффиксов. Какие есть условия написания гласных в корнях с чередованием? А теперь обратимся к корню -кас-кос-, слов с этим […]
  • Правила петанк Виды спорта [2018-02-23 14:43:28] Надя . [2018-02-23 14:41:05] Надя Спасибо! . Правила петанка Петанк настолько универсальная игра, что для нее подойдет практически любая площадка с достаточно твердым и нескользким покрытием […]
  • Формат разрешения 4 3 Форум сайта фотошоп-мастер: 4:3 это сколько в мм? см? нужна картинка для телика - Форум сайта фотошоп-мастер Форум сайта фотошоп-мастер >Вопросы по работе в фотошопе >Общие вопросы по работе в программе Фотошоп 2 Страниц 1 […]
  • Решить систему уравнений правило Метод подстановки 1. Выразить у через х из одного уравнения системы.2. Подставить полученное выражение вместо у в другое уравнение системы.3. Решить полученное уравнение относительно х.4. Подставить поочередно каждый из найденных на […]
  • Пенсии для инвалидов в 2012 году Кому и на сколько повысят пенсию с 1 апреля? На вопросы читателей «Комсомолки» ответила заместитель управляющего Омским отделением Пенсионного фонда Галина Горст. - Здравствуйте, меня зовут Глафира Нестеровна. Я получаю только пенсию по […]