Закон чистоты гамет и примеры

Законы Менделя

Законы Менделя

Законы Менделя — это принципы передачи наследственных признаков от родителей к потомкам, названные в честь своего первооткрывателя монаха Грегора Менделя. Объяснения научных терминов — в словаре генетических терминов.

Законы Менделя справедливы только для моногенных признаков, то есть признаков, каждый из которых определяется одним геном. Те признаки, на проявление которых влияют два или несколько генов, наследуются по более сложным правилам.

Закон единообразия гибридов первого поколения (первый закон Менделя) (другое название – закон доминирования признаков): при скрещивании двух гомозиготных организмов, один из которых гомозиготен по доминантному аллелю данного гена, а другой – по рецессивному, все особи первого поколения гибридов (F1) будут одинаковыми по признаку, определяемому данным геном, и идентичными тому из родителей, который несет доминантный аллель. Все особи первого поколения от такого скрещивания будут гетерозиготными.

Предположим, мы скрестили кота черного окраса и кошку коричневого. Черный и коричневый окрас определяется аллелями одного и того же гена, аллель черного окраса В доминирует над аллелем коричневого b. Скрещивание можно записать как BB (кот) x bb (кошка). Все котята от этого скрещивания будут черными и иметь генотип Вb (рисунок 1).

Заметим, что рецессивный признак (коричневый окрас) на самом деле никуда не пропал, он замаскирован доминантным признаком и, как мы сейчас увидим, проявится в последующих поколениях.

Закон расщепления (второй закон Менделя): при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении (F2) число потомков, идентичных по данному признаку доминантному родителю, будет в 3 раза больше, чем число потомков, идентичных рецессивному родителю. Другими словами, расщепление по фенотипу во втором поколении будет равно 3:1 (3 фенотипически доминантных : 1 фенотипически рецессивный). (расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении). По генотипу расщепление будет равно 1:2:1 (1 гомозигота по доминантному аллелю : 2 гетерозиготы : 1 гомозигота по рецессивному аллелю).

Такое расщепление происходит благодаря принципу, который получил название закона чистоты гамет. Закон чистоты гамет гласит: в каждую гамету (половую клетку – яйцеклетку или сперматозоид) попадает только один аллель из пары аллелей данного гена родительской особи. Когда гаметы сливаются при оплодотворении, происходит их случайное соединение, которое и приводит к данному расщеплению.

Возвращаясь к нашему примеру с кошками, предположим, ваши черные котята подросли, вы за ними не уследили, и двое из них произвели потомство – четырех котят.

И кот, и кошка гетерозиготы по гену окраса, они имеют генотип Bb. Каждый из них согласно закону чистоты гамет производит гаметы двух типов – B и b. В их потомстве будет 3 котенка черных (ВB и Bb) и 1 коричневый (bb) (Рис. 2) (На самом деле, эта закономерность статистическая, поэтому расщепление выполняется в среднем, и такой точности в реальном случае может и не наблюдаться).

Для наглядности результаты скрещивания на рисунке приведены в таблице, соответствующей так называемой решетке Пеннета (диаграмме, позволяющей быстро и ясно расписать конкретное скрещивание, которой часто пользуются генетики).

Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. скрещивании). Закон независимого расщепления выполняется только для генов, находящихся в негомологичных хромосомах (для несцепленных генов).

Ключевой момент здесь то, что разные гены (если они не находятся в одной хромосоме) наследуются независимо друг от друга. Продолжим наш пример из жизни кошек. Длина шерсти (ген L) и окрас (ген В) наследуются независимо друг от друга (расположены в разных хромосомах). Короткая шерсть (аллель L) доминирует над длинной (l), а черный окрас (B) – над коричневым b. Предположим, мы скрещиваем короткошерстного черного кота (BB LL) с длинношерстной коричневой кошкой (bb ll) .

В первом поколении (F1) все котята будут черными и короткошерстными, а генотип их будет Bb Ll. Однако коричневый окрас и длинношерстность никуда не делись – контролирующие их аллели просто «спрятались» в генотипе гетерозиготных животных! Скрестив кота и кошку из этих потомков, во втором поколении (F2) мы будем наблюдать расщепление 9:3:3:1 (9 короткошерстных черных, 3 длинношерстных черных, 3 короткошерстных коричневых и 1 длинношерстный коричневый). Почему так происходит и какие генотипы у этих потомков, показано в таблице.

В заключение еще раз напомним, что расщепление по законам Менделя – явление статистическое и соблюдается только в случае наличия достаточно большого количества животных и в случае, когда аллели изучаемых генов не влияют на жизнеспособность потомства. Если эти условия не соблюдаются, в потомстве будут наблюдаться отклонения от менделевских соотношений.

www.catgallery.ru

Мендель предположил, что наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде. Гибрид F1, полученный от скрещивания родителей, различающихся по альтернативным признакам, содержит оба фактора: доминантный и рецессивный. Связь между поколениями при половом размножении осуществляется через половые клетки — гаметы. Допустим, что каждая гамета несет только один фактор из пары.

Тогда при оплодотворении слияние двух гамет с рецессивными признаками приводит к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, несущих по доминантному фактору, или же двух гамет, одна из которых содержит доминантный, а другая — рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении (F2) организма с рецессивным признаком может иметь место только при соблюдении двух условий:

  1. если у гибрида наследственные факторы сохраняются в неизменном виде;
  2. если половые клетки (гаметы) содержат только один наследственный фактор из аллельной пары.

Расщепление признаков в потомстве при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, т. е. несут только один ген из аллельной пары.

Гипотезу чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

Как это происходит? Известно, что при образовании гамет гомологичные хромосомы гибридов в результате первого деления митоза переходят в разные клетки. В организме образуются два вида гамет. Гипотеза чистоты гамет устанавливает, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены: АА, Аа, аа.

biologylife.ru

Гипотеза чистоты гамет

3. Гипотеза чистоты гамет была выдвинута Менделем для объяснения установленных при гибридизации закономерностей. Смысл ее состоит в том, что гибридные (гетерозиготные) организмы формируют негибридные, «чистые» половые клетки (гаметы).

Позже это положение Менделя полностью подтвердилось цитологическими данными о ходе митоза, мейоза и оплодотворения.

Если принять, что каждый признак (скажем, желтая или зеленая окраска семян у гороха) передается из поколения в поколение при помощи специальной материальной единицы — гена, а гены находятся в хромосомах, то итоги моногибридного скрещивания полностью совпадут с поведением хромосом при смене поколений (рис. 14). Действительно, каждая клетка тела организма имеет диплоидный набор хромосом; при образовании половых клеток в результате мейоза каждая гамета получает только гаплоидный набор хромосом. При последующем оплодотворении диплоидный набор восстанавливается в зиготе и сохраняется во всех клетках нового организма. При этом одна хромосома из каждой гомологичной пары получена от отцовского, а другая — от материнского организма.

До сих пор мы обозначали буквами сами признаки организмов (А—желтая, а — зеленая окраска). Исходя из того, что наследственная информация об этих признаках передается через гены, обозначим буквами сами гены: А—ген желтой окраски семян, а — ген зеленой окраски семян. Пара таких генов называется аллельными генами и находится в паре гомологичных хромосом гибрида: А — в одной хромосоме (от одного родителя), а — в другой хромосоме той же пары (от другого родителя). Поэтому схему скрещивания, изображенную на рис. 14, в буквенной символике можно записать так:

В схеме формулы А А, Аа и аа будут означать генотипы тех или иных организмов. Если в паре аллельных генов ген А полностью доминирует над геном а, то два организма с разными генотипами — АА и Аа — будут выглядеть одинаково. Именно этот случай имел место при скрещивании Горохов: гомозиготные растения АА и гетерозиготные растения Аа имели одинаковую желтую окраску семян. В случае неполного доминирования (ночная красавица) гомозиготные (АА) и гетерозиготные (Аа) растения отличались: первые имели красную окраску цветков, а вторые — розовую.

Рис. 14. Цитологические основы моногибридного скрещивания; гаметы любого поколения несут либо «светлую», либо «темную» хромосому и, соответственно, только один из двух аллельных генов (гипотеза «чистоты» гамет): 1 — хромосомы, несущие ген доминантного признака, 2 — хромосомы, несущие ген рецессивного признака

Все сказанное поясняет очень важное положение генетики: не всегда по реальным признакам организма можно прямо судить о его наследственности. Поэтому и необходим гибридологический метод изучения наследственности. Только этим методом по признакам потомства можно, например, отличить гомозиготные желтозерные растения гороха (АА) от гетерозиготных желтозерных (Аа).

Более сложным случаем будет дигибридное скрещивание. При нем одновременно прослеживается наследование двух пар контрастирующих признаков при гибридизации. Так, Мендель скрещивал сорт гороха с желтыми гладкими семенами с сортом, семена которого были зелеными и морщинистыми. Все растения F1 имели желтые гладкие семена. Поэтому гены, определяющие эти две пары признаков, можно обозначить: А — ген желтой окраски (доминантный), а —ген зеленой окраски (pецессивный), В — ген гладкой поверхности (доминантный); в — ген морщинистой поверхности (рецессивный).

Характер расщепления в F2 и его генетическая расшифровка показаны на рис. 15. Разберемся в этой схеме. Растения F1 получают от своих родителей доминантный ген желтой окраски А и рецессивный ген зеленой окраски а, доминантный ген гладкой В и рецессивный ген морщинистой в поверхности семян. В результате образуется двойная гетерозиготная особь, генотип которой будет включать в себя две пары генов Аа и Вв, т. е. его можно записать как АаВв. В результате доминирования желтой окраски и гладкой поверхности семян эти растения будут иметь желтые гладкие семена.

Рис. 15. Схема дигибридного скрещивания на примере гороха

При образовании гамет двойная гетерозиготная особь АаВв даст 4 типа разных половых клеток. Цитологически это может произойти, если пара генов Аа находится в одной паре гомологичных хромосом, а пара генов Вв —в другой паре гомологичных хромосом. Так возникают гаплоидные мужские и женские половые клетки с набором генов: AB, ав, Ав и аВ; при этом число разных по генному составу половых клеток примерно одинаково. В процессе оплодотворения любая мужская гамета может оплодотворить любую женскую. Всего сочетаний из 4 разных гамет по 2 гаметы (мужская и женская) может быть 16. Значит возникает 16 зигот F2, которые записаны в 16 клетках на рис. 15. Если внимательно рассмотреть все 16 клеток, то увидим: разных генотипов всего образовалось 9, а разных сочетаний признаков в силу явления доминирования— только 4. При этом количественное соотношение фенотипов получилось следующее: 9 растений с желтыми гладкими семенами, 3 — с желтыми морщинистыми, 3 — с зелеными гладкими и один — с зелеными морщинистыми семенами.

biologiya.net

23. Законы моногенного наследования, установленные Менделем, и их цитологическое обоснование. Закон чистоты гамет.

Закон единообразия гибридов первого поколения

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготностьособей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий горохас пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак,гибридыпервого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой(рецессивный).

Закон расщепления признаков

Закон расщепления, или второй закон Менделя: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Явление, при котором скрещивание гетерозиготныхособей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Закон чистоты гамет: в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. У гибрида присутствуют оба фактора — доминантный и рецессивный, но проявление признака определяет доминантныйнаследственный фактор, рецессивный же подавляется. Связь между поколениями приполовом размноженииосуществляется через половые клетки —гаметы. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда приоплодотворениислияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимсяфенотипически. Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор изаллельнойпары. Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, то есть несут только одингениз аллельнои пары. Гипотезу (теперь ее называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена.

Закон независимого наследования признаков

Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосомгороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

studfiles.net

Закон чистоты гамет(самое главное)

Ответы и объяснения

Закон чистоты гамет: в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий) .

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. У гибрида присутствуют оба фактора — доминантный и рецессивный, но проявление признака определяет доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки — гаметы. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельнои пары. Гипотезу (теперь ее называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена.

znanija.com

Смотрите так же:

  • Промежуточный характер наследования признака Неполное доминирование. Промежуточное наследование Материал из Vladimir У некоторых организмов при скрещивании не выполняются закономерности, установленные Г. Менделем. Известно, что в гетерозиготном организме доминантный ген не всегда […]
  • Как изменить разрешение кс го через консоль cs:go проблема с настройкой разрешения экрана Похожие Темы Форум Natus Vincere Игровое сообщество «Natus Vincere» состоит из следующих разделов: Natus Vincere Counter-Strike: Global Offensive Dota 2 World of Tanks Heroes of the […]
  • Памятки правило дорожного движения Памятка для учащихся по правилам дорожного движения Памятка для учащихся по правилам дорожного движения 1. Ходите только по тротуару! 2. Переходите улицу в местах, где имеются линии или указатели перехода, а где их нет – на […]
  • Раскройте закон чистоты гамет Параграф 37. Законы Менделя. - 9 класса - Мамонтова, Захарова (рабочая тетрадь). 1. Допишите предложения. 1. Сущность гибридизации как метода генетического исследования заключается в скрещивании двух организмов. 2. Гибридизация, при […]
  • Закон распределения шаров 7. Закон распределения дискретной случайной величины Определение. Соотношение между возможными значениями случайной величины и их вероятностями называется Законом распределения Дискретной Случайной величины. Закон распределения может […]
  • Решить систему уравнений правило Метод подстановки 1. Выразить у через х из одного уравнения системы.2. Подставить полученное выражение вместо у в другое уравнение системы.3. Решить полученное уравнение относительно х.4. Подставить поочередно каждый из найденных на […]