Правило правой руки для ленца

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

М. Фарадей — 1831 г.

Способы получения индукционного тока

.

1. перемещение магнита и катушки относительно друг друга;
2. перемещение одной катушки относительно другой;
3. изменение силы тока в одной из катушек;
4. замыкание и размыкание цепи;
5. перемещение сердечника;

Явление электромагнитной индукции

— возникновение электрического тока в замкнутом проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле так, что число линий магнитной индукции, пронизывающих контур, меняется. Чем быстрее меняется число линий магнитной индукции, тем больше индукционный ток.

МАГНИТНЫЙ ПОТОК
( или поток магнитной индукции)

Магнитным потоком через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции В на площадь S и косинус угла между векторами В и n.

Магнитный поток пропрционален числу линий магнитной индукции, пронизывающих поверхность площадью S.

Магнитный поток характеризует распределение магнитного поля по поверхности , ограниченной контуром.

Магнитный поток в 1Вб создается однородным магнитным полем с индукцией 1Тл через поверхность площадью 1м2, расположенной перпендикулярно вектору магнитной индукции.

НАПРАВЛЕНИЕ ИНДУКЦИОННОГО ТОКА

Направление индукционного тока определяется по правилу правой руки:

Если поставить правую руку так, чтобы вектор магнитной индукции входил в ладонь, отставленный на 90 градусов большой палец указывал направление вектора скорости, то выпрямленные 4 пальца покажут направление индукционного тока в проводнике.

Направление индукционного тока в замкнутом контуре определяется по правилу Ленца.

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению магнитного потока, которым он вызван.

Применение правила Ленца

1. показать направление вектора В внешнего магнитного поля;

2. определить увеличивается или уменьшается магнитный поток через контур;

3. показать направление вектора Вi магнитного поля индукционного тока ( при уменьшении магнитного потока вектора В внешнего м.поля и Вi магнитного поля индукционного тока должны быть направлены одинаково, а при увеличениии магнитного потока В и Вi должны быть направлены противоположно );

4. по правилу буравчика определить направление индукционного тока в контуре.

Другие страницы по теме «Электромагнитное поле» за 10-11 класс:

Вспомни тему «Электромагнитные явления» за 8 класс:

class-fizika.narod.ru

Правила левой и правой руки

Правило правой руки – правило, использующееся для определения вектора магнитной индукции поля.

Данное правило также имеет названия «правило буравчика» и «правило винта», из-за схожести принципа действия. Широко распространено в физике, так как позволяет без применения специальных приборов или вычислений определить важнейшие параметры – угловую скорость, момент сил, момент импульса. В электродинамике данный способ позволяет определить вектор магнитной индукции.

Правило буравчика

Правило буравчика или винта: если ладони правой руки поставить так, чтобы она совпадала с направлением тока в изучаемом проводнике, то поступательное вращение ручки буравчика (большого пальца ладони) укажет непосредственно вектор магнитной индукции.

Иными словами, необходимо правой рукой как будто вкручивать бур или штопор, чтобы определить вектор. Особых сложностей в освоении данного правила нет.

Есть ещё одна разновидность данного правила. Чаще всего данный способ называется просто «правилом правой руки».

Оно звучит следующим образом: чтобы определить направление линий индукции создаваемого магнитного поля, необходимо рукой взять проводник так, чтобы оставленный на 90 о большой палец показал направление тока, протекающего через него.

Есть аналогичный вариант и для соленоида.

В данном случае следует обхватить прибор так, чтобы пальцы ладони совпадали с направлением тока в витках. Оттопыренный большой палец в данном случае покажет, откуда выходят линии магнитного поля.

Правило правой руки для движущегося проводника

Поможет данное правило и в случае с движущимися в магнитном поле проводниками. Только здесь необходимо действовать несколько по-другому.

Открытая ладонь правой руки должна располагаться так, чтобы силовые линии поля входили в неё перпендикулярно. Вытянутый большой палец должен указывать на направление движения проводника. При таком расположении вытянутые пальцы совпадут с направлением индукционного тока.

Как мы видим, количество ситуаций, когда данное правило реально помогает, достаточно велико.

Первое правило левой руки

Необходимо поставить левую ладонь таким образом, чтобы линии индукции поля входили в неё под прямым углом (перпендикулярно). Четыре вытянутых пальца ладони должны совпадать с направлением электрического тока в проводнике. В этом случае отставленный большой палец левой ладони покажет направление действующей на проводник силы.

На практике данный способ позволяет определить направление, куда начнёт отклоняться проводник с проходящим по нему электрическим током, помещённый между двумя магнитами.

Второе правило левой руки

Есть и другие ситуации, когда можно воспользоваться правилом левой руки. Вчастности для определения сил при движущемся заряде и неподвижном магните.

Другое правило левой руки гласит: Ладонь левой руки следует расположить таким образом, чтобы в неё перпендикулярно входили линии индукции созданного магнитного поля. Положение четырёх вытянутых пальцев зависит от направления электрического тока (по движению положительно заряженных частиц, либо против отрицательных). Оттопыренный большой палец левой руки в этом случае укажет направление силы Ампера или силы Лоренца.

Преимущества правил правой и левой руки заключается как раз в том, что они просты и позволяют достаточно точно определить важные параметры без использования дополнительных приборов. Они используются и при проведении различных опытов и испытаний, и на практике, когда дело касается проводников и электромагнитных полей.


solo-project.com

Правило правой руки

При движении проводника в магнитном поле в нем создается направленное движение электронов, то есть электрический ток, что обусловлено явлением электромагнитной индукции.

Для определения на­правления движения элек­тронов воспользуемся из­вестным нам правилом ле­вой руки.

Если, например, про­водник, расположенный перпендикулярно чертежу (рисунок 1), перемещается вместе с содержащимися в нем электронами сверху вниз, то это перемещение электронов будет эквивалентно элек­трическому току, направленному снизу вверх. Если при этом магнитное поле, в котором движется проводник, направлено слева направо, то для определения направления силы, дей­ствующей на электроны, мы должны будем поставить левую руку ладонью влево, чтобы магнитные силовые линии входили в ладонь, а четырьмя пальцами вверх (против направления движения проводника, т. е. по направлению «тока»); тогда на­правление большого пальца покажет нам, что на электроны, находящиеся в проводнике, будет действовать сила, направ­ленная от нас к чертежу. Следовательно, перемещение элек­тронов будет происходить вдоль проводника, т. е. от нас к чертежу, а индукционный ток в проводнике будет направлен от чертежа к нам.

Рисунок 1. Механизм электромагнитной индукции. Перемещая проводник, мы перемещаем вместе с проводчиком все электроны, заключенные в нем, а при перемещении в магнитном поле электрических зарядов на них будет действовать сила по правилу левой руки.

Однако, правило левой руки, примененное нами лишь для объяснения явления электромагнитной индукции, оказывается неудобным на практике. Практически направление индукцион­ного тока определяется по правилу правой руки (рисунок 2).

Рисунок 2. Правило правой руки. Правая рука повернута ладонью навстречу магнит­ным силовым линиям, большой палец направлен в сторону движения проводника, а четыре пальца по­казывают, в каком направлении будет течь индук­ционный ток.

Правило правой руки состоит в том, что, если по­местить правую руку в магнитное поле так, чтобы магнитные силовые линии входили в ладонь, а большой палец указывал направле­ние движения проводника, то остальные четыре пальца покажут направление ин­дукционного тока, возникающего в провод­нике.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

www.sxemotehnika.ru

Правило правой руки для ленца


Электромагнитная индукция


Представим себе два параллельных проводника аб и вг , расположенных на близком расстоянии один от другого. Проводник аб подключен к зажимам батареи Б ; цепь включается ключом К , при замыкании которого по проводнику проходит ток в направлении от а к б . К концам же проводника вг присоединен чувствительный амперметр А , по отклонению стрелки которого судят о наличии тока в этом проводнике.

Если в собранной таким образом схеме замкнуть ключ К , то в момент замыкания цепи стрелка амперметра отклонится, свидетельствуя о наличии тока в проводнике вг ;
по прошествии же небольшого промежутка времени (долей секунды) стрелка амперметра придет в исходное (нулевое) положение.

Размыкание ключа К опять вызовет кратковременное отклонение стрелки амперметра, но уже в другую сторону, что будет указывать на возникновение тока противоположного направления.
Подобное отклонение стрелки амперметра А можно наблюдать и в том случае, если, замкнув ключ К , приближать проводник аб к проводнику вг или удалять от него.

Приближение проводника аб к вг вызовет отклонение стрелки амперметра в ту же сорону, что и при замыкании ключа К , удаление проводника аб от проводника вг повлечет за собой отклонение стрелки амперметра, аналогичное отклонению при размыкании ключа К .

При неподвижных проводниках и замкнутом ключе К ток в проводнике вг можно вызвать изменением величины тока в проводнике аб .
Аналогичные явления происходят и в том случае, если проводник, питаемый током, заменить магнитом или электромагнитом.

Так, например, на рисунке схематически изображена катушка (соленоид) из изолированной проволоки, к концам которой подключен амперметр А .

Если внутрь обмотки быстро ввести постоянный магнит (или электромагнит), то в момент его введения стрелка амперметра А отклонится; при выведении магнита будет также наблюдаться отклонение стрелки амперметра, но в другую сторону.

Электрические токи, возникающие при подобных обстоятельствах, называются индукционными, а причина, вызывающая появление индукционных токов, электродвижущей силой индукции.

Эта эдс возникает в проводниках под действием изменяющихся магнитных полей,
в которых находятся эти проводники.
Направление эдс индукции в проводнике, перемещающемся в магнитном поле, может быть определено по правилу правой руки, которое формулируется так:

Если правую руку расположить ладонью к северному полюсу так, чтобы большой отогнутый палец показывал направление движения проводника, то четыре пальца будут указывать направление эдс индукции.

Направление индукционного тока, а следовательно, и эдс индукции определяют также по правилу Ленца, которое формулируется следующим образом:

Эдс индукции имеет всегда такое направление, что созданный ею индукционный ток препятствует причине, ее вызывающей.
Величина эдс индукции, возникающей в замкнутом проводнике, пропорциональна скорости изменения магнитного потока, пронизывающего контур этого проводника.

Таким образом, если магнитный поток, пронизывающий контур замкнутого проводника, уменьшился на величину Ф в течение t секунд, то скорость уменьшения магнитного потока равна Ф/ t .

Это отношение и представляет собой величину эдс индукции е , т. е.
е = — Ф/ t .
Знак минус указывает на то, что ток, созданный эдс индукции, препятствует причине, вызвавшей эту здс.

Возникновение эдс индукции в замкнутом контуре происходит как при движении этого контура в магнитном поле, так и при изменении магнитного потока, пронизывающего неподвижный контур.
Если контур имеет витков, то индуктированная эдс
e = — Ф/ t.

Произведение числа витков и магнитного потока, пронизывающих их, называется потокосцеплением = Ф , следовательно, индуктированная в катушке эдс
е = — Ф/ t = — / t.

Эта формула, выражающая закон электромагнитной индукции, является исходной для определения эдс, индуктируемых в обмотках электротехнических машин и аппаратов.
Когда контур охватывается лишь частью магнитного потока, величина эдс индукции зависит от скорости изменения не всего потока, а лишь части его.

Допустим, что прямоугольный замкнутый контур абвг , стороны которого равны l и h , находится в магнитном поле, магнитная индукция которого во всех точках равна
В (Тл) и направлена за плоскость рисунка.

Пусть контур, оставаясь в плоскости рисунка, перемещается с равномерной скоростью сверху вниз и в течение t с выходит за пределы магнитного поля.

Замкнутый контур, перемещающийся в магнитном поле

Так как контур абвг перемещается вниз, то магнитный.поток, пронизывающий контур, уменьшается. Следовательно, направление эдс индукции совпадает с вращательным движением рукоятки буравчика, ввинчиваемого вдоль магнитных линий, т. е. по часовой стрелке.

Величина этой эдс индукции определится из следующих соображений.
Площадь, ограниченная контуром проводника, S=lh .
Магнитный поток, пронизывающий контур проводника, Ф=BS .
Чтобы уйти за пределы магнитного поля, т. е. чтобы изменить магнитный поток от Ф до нуля или на величину Ф=Ф , требуется, чтобы t=t .

Следовательно, Е= Ф/ t =Ф/t или E=Blh/t.

Частное от деления пути h , пройденного проводником, на время t представляет собой скорость движения этого проводника. Обозначив ее буквой v , получим E=Blv .

Если в этой формуле магнитная индукция В выражена в теслах, длина l — в метрах и скорость v — в метрах на секунду (м/с), то эдс индукции выражается в вольтах.

Эта формула справедлива лишь в том случае, если проводник перемещается в магнитном поле в направлении, перпендикулярном магнитным силовым линиям этого поля.
Если проводник пересекает магнитные линии под каким-либо углом, то
E=Blv sin ,
где — угол между направлением движения проводника и направлением вектора магнитной индукции (магнитных линий).

Пример воздействия магнитного поля на замкнутый контур


Скачать можно здесь

(Подробно и доходчиво в видеокурсе «В мир электричества — как в первый раз!»)

eleczon.ru

§ 40. Направление индукционного тока. Правило Ленца

Как же направлен индукционный ток? Для ответа на этот вопрос воспользуемся прибором, изображённым на рисунке 123. Он представляет собой узкую алюминиевую пластинку с алюминиевыми кольцами на концах. Одно кольцо сплошное, другое имеет разрез. Пластинка с кольцами помещена на стойку и может свободно вращаться вокруг вертикальной оси.

Возьмём полосовой магнит и внесём его в кольцо с разрезом — кольцо останется на месте. Если же вносить магнит в сплошное кольцо, то оно будет отталкиваться, уходить от магнита, поворачивая при этом всю пластинку. Результат будет точно таким же, если магнит будет повёрнут к кольцам не северным полюсом (как показано на рисунке), а южным. Объясним наблюдаемые явления.

При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается (рис. 124). При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом тока не будет.

Ток в сплошном кольце создаёт в пространстве магнитное поле, благодаря чему кольцо приобретает свойства магнита. Взаимодействуя с приближающимся полосовым магнитом, кольцо отталкивается от него. Из этого следует, что кольцо и магнит обращены друг к другу одноимёнными полюсами, а векторы магнитной индукции (к и м) их полей направлены в противоположные стороны (рис. 125). Зная направление вектора индукции магнитного поля кольца, можно по правилу правой руки (см. рис. 97) определить направление индукционного тока в кольце.

Отодвигаясь от приближающегося к нему магнита, кольцо противодействует увеличению проходящего сквозь него внешнего магнитного потока.

Теперь посмотрим, что произойдёт при уменьшении внешнего магнитного потока сквозь кольцо. Для этого, удерживая кольцо рукой, внесём в него магнит. Затем, отпустив кольцо, начнём удалять магнит. В этом случае кольцо будет следовать за магнитом, притягиваться к нему (рис. 126). Значит, кольцо и магнит обращены друг к другу разноимёнными полюсами, а векторы магнитной индукции их полей направлены в одну сторону (рис. 127).

При одинаковом направлении к и м магнитное поле тока будет противодействовать уменьшению внешнего магнитного потока, проходящего сквозь кольцо.

Мы видим, что для определения направления индукционного тока прежде всего необходимо узнать, как направлен вектор магнитной индукции созданного этим током магнитного поля (в центре кольца). На основании результатов рассмотренных опытов (в одном из них внешний магнитный поток увеличивался, а в другом — уменьшался) было сформулировано правило, которое в современной формулировке звучит так:

  • возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток.

Данное правило было установлено в 1834 г. российским учёным Эмилием Христиановичем Ленцем, в связи с чем называется правилом Ленца.

1. Для чего проводился опыт, изображённый на рисунках 123 и 126?
2. Почему кольцо с разрезом не реагирует на приближение магнита?
3. Объясните явления, происходящие при приближении магнита к сплошному кольцу (см. рис. 125); при удалении магнита (см. рис. 127).
4. Как определить направление индукционного тока в кольце?
5. Сформулируйте правило Ленца.

Упражнение 37

1. Как вы думаете, почему прибор, изображённый на рисунке 123, изготовлен из алюминия? Как проходил бы опыт, если бы прибор был железным; медным?

2. В данном ниже перечне логических операций, которые мы выполняли для определения направления индукционного тока, нарушена последовательность их проведения. Запишите в тетради буквы, обозначающие эти операции, расположив их в правильной последовательности.

а) Определили направление индукционного тока в кольце (пользуясь правилом правой руки).

б) Определили направление вектора индукции к магнитного поля тока в кольце по отношению к направлению вектора магнитной индукции м поля магнита, исходя из того, что кольцо отталкивается от магнита при его приближении (значит, они обращены друг к другу одноимёнными полюсами, и к ↑↓ м) и притягивается при удалении (значит, кольцо и магнит обращены друг к другу разноимёнными полюсами, и к ↑↑ м).

в) Определили направление вектора магнитной индукции м поля магнита (по расположению его полюсов).
vip8082p.vip8081p.beget.tech

Смотрите так же:

  • Акт разрешение на проведение занятий в учебном кабинете Материально-техническое обеспечение и оснащенность образовательного процесса Информация о наличии оборудованных учебных кабинетах, объектах для проведения практических занятий, библиотеках, объектах спорта, средствах обучения и […]
  • Решить систему уравнений правило Метод подстановки 1. Выразить у через х из одного уравнения системы.2. Подставить полученное выражение вместо у в другое уравнение системы.3. Решить полученное уравнение относительно х.4. Подставить поочередно каждый из найденных на […]
  • Пишется претензия Автор: Соколова Ирина Евгеньевна, руководитель аналитического управления Объединения потребителей России Часто случается, что у потребителя возникают претензии к качеству приобретенного товара (к качеству выполненной работы), а […]
  • Правило дифференцирования таблица производных Правила дифференцирования. Производная произведения функций. Дифференцирование – определение производных и дифференциалов всех порядков от функции одной переменной и частных производных и дифференциалов, кроме того, полных дифференциалов […]
  • Правила дифференцирования с примерами Правила дифференцирования с примерами На этом занятии мы будем учиться применять формулы и правила дифференцирования. Примеры. Найти производные функций. 1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Применяем правило I, формулы 4, 2 и 1. […]
  • Детские пособия до 15 или до 16 Размер и правила оформления детского пособия до 16 и 18 лет На сегодня Правительство РФ всячески пытается наладить демографическую ситуацию в стране, которая за последние несколько лет значительно ухудшилась. Одним из главных инструментов […]