Чему равен модуль скорости и ускорения точки движущейся по закону

Кинематика

21. Тело движется равноускоренно с начальной скоростью v0. Определить ускорение тела, если за время t оно прошло путь S и его скорость v.

22. Материальная точка движется вдоль прямой так, что её ускорение линейно растёт и за первые 10 секунд достигает значения 5 м/с 2 . Определить в конце десятой секунды: 1) скорость точки; 2) пройденный точкой путь.

23. Кинетические уравнения движения двух материальных точек имеют вид x1 = A1*t + B1*t 2 + C1*t 3 и x2 = A2*t + B2*t 2 + C2*t 3 , где B1 = 4 м/с 2 , C1 = – 3 м/с 3 , B2 = -2 м/с 2 C2 = 1 м/c 3 . Определите момент времени, для которого ускорения этих точек будут равны.

24. Кинетические уравнения движения двух материальных точек имеют вид x1 = A1 + B1*t + C1*t 2 и x2 = A2 + B2*t + C2*t 2 , где B1 = B2, C1 = – 2 м/с 2 , C2 = 1 м/c 2 . Определить: 1) момент времени, для которого скорости этих точек будут равны; 2) ускорение a1 и a2 для этого момента.

25. Нормальное ускорение точки, движущейся по окружности радиусом r = 4 м, задается уравнением an = A + B*t + С*t 2 (A = 1 м/c 2 , B = 6 м/с 3 , С = 9 м/с 4 ) Определите: 1) тангенсальное ускорение точки; 2) путь, пройденный точкой за время t = 5 сек. после начала движения; 3) полное ускорение для момента времени t2 = 1 секунде.

26. Зависимость пройденного телом пути sот времени tвыражается уравнением s= At Bt 2 + Ct 3 (A= 2 м/с, В = 3 м/с 2 , С = 4 м/с 3 ). Запишите выражения для скорости и ускорения. Определите для момента времени t— 2 с после начала движения 1) пройденный путь; 2) скорость; 3) ускорение.

27. Зависимость пройденного телом пути по окружности радиусом r= 3 м задается уравнением s= At 2 + Bt(А = 0,4 м/с : , B = 0,1 м/с) Определите для момента времени t = 1 с после начала движения ускорение: 1) нормальное, 2) тангенциальное; 3) полное.

28. Точка движется в плоскости ху из положения с координатами х1 = v1 = 0 со скоростью v = ai+ bxj(а, b— постоянные, i, j — орты осей x и y). Определите: 1) уравнение траектории точки y(x); 2) форму траектории.

29. Радиус-вектор материальной точки изменяется со временем по закону r = t 3 i+ 3t 2 j, где i, j — орты осей х и у. Определите для момента времени t = 1 с: 1) модуль скорости; 2) модуль ускорения.

30. Радиус-вектор материальной точки изменяется со временем по закону r = 4t 2 i+ 3tj + 2k. Определите: 1) скорость v; 2) ускорение а; 3) модуль скорости в момент времени t= 2 с.

31. Движение материальной точки в плоскости ху описывается законом х = At, у = At (1 + Bt), где A и B— положительные постоянные. Определите: 1) уравнение траектории материальной точки y(х); 2) радиус-вектор r точки в зависимости от времени; 3) скорость vточки в зависимости от времени; 4) ускорение а точки в зависимости от времени.

32. Материальная точка начинает двигаться по окружности радуисом r = 12,5 с постоянным тангенсальным ускорением аτ = 0,5 см/с 2 . Определить: 1) момент времени, при котором вектор ускорения a образует с вектором скорости v угол α = 45; 2) путь, пройденный за это время движущейся точкой.

33. Линейная скорость v1 точки, находящейся на ободе вращающегося диска, в три раза больше, чем линейная скорость v2точки, находящейся на 6 см ближе к его оси. Определите радиус диска.

34. Колесо вращается с постоянным угловым ускорением ε = 3рад/с. Определить радиус колеса, если через время t = 1 с после начала движения полное ускорение колеса равно а = 7,5 м/с 2 .

35. Якорь электродвигателя, имеющий частоту вращения n = 50, после выключения тока, сделав N = 628 оборотов, остановился. Определить угловое ускорение ε якоря.

36. Колесо автомобиля вращается равнозамедленно. За время t = 2 мин оно изменило частоту вращения от 240 до 60 мин -1 . Определить: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время.

37. Точка движется по окружности радиусом R = 15 см с постоянным тангенсальным ускорением aτ. К концу четвертого оборота после начала движения линейная скорость точки v1 = 15 см/с. Определить нормальное ускорение an2 точки через t 2 = 16 c после начала движения.

38. Диск радиусом R = 10 см вращается вокруг неподвижной оси так, что зависимость угла поворота диска от времени задается уравнением φ = A + Bt+ Сt 2 + Dt 3 (B = 1 рад/с, C = 1 рад/с 2 , D = 1 рад/с 3 ). Определите для точек на ободе диска к концу второй секунды после начала движения: 1) тангенциальное ускорение аτ; 2) нормальное ускорение аn; 3) полное ускорение а.

39. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением φ = Аt 2 (A = 0,5 рад/с 2 ). Определить к концу второй секунды после начала движения: 1) угловую скорость диска; 2) угловое ускорение диска; 3) для точки, находящейся на расстоянии 80 см от оси вращения, тангенциальное aτ, нормальное an и полное ускорение а.

40. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением φ = Аt 2 (A = 0,1 рад/с 2 ). Определить полное ускорение a точки на ободе диска к концу второй секунды после начала движения, если в этот момент линейная скорость этой точки v = 0,4 м/с.

Ошибка в тексте? Выдели её мышкой и нажми

Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!

studyport.ru

1. Способы задания движения точки в заданной системе отсчета

3. Определение скорости и ускорения точки при координатном способе задания движения

1. Способы задания движения точки в заданной системе отсчета

Основными задачами кинематики точки являются:

1. Описание способов задания движения точки.

2. Определение кинематических характеристик движения точки (скорости, ускорения) по заданному закону движения.

Механическое движение − изменение положения одного тела относительно другого (тела отсчета), с которым связана система координат, называемая системой отсчета .

Геометрическое место последовательных положений движущейся точки в рассматриваемой системе отсчета называется траектория точки.

Задать движение − это дать способ, с помощью которого можно определить положение точки в любой момент времени по отношению к выбранной системе отсчета. К основным способам задания движения точки относятся:

векторный, координатный и естественный .

1.Векторный способ задания движения (рис. 1).

Положение точки определяется радиус-вектором, проведенным из неподвижной точки, связанной с телом отсчета: − векторное уравнение движения точки.

2.Координатный способ задания движения (рис. 2).

В этом случае задаются координаты точки как функции времени:

— уравнения движения точки в координатной форме.

Это и параметрические уравнения траектории движущейся точки, в которых роль параметра играет время . Чтобы записать ее уравнение в явной форме, надо исключить из них . В случае пространственной траектории, исключив , получим:

В случае плоской траектории

исключив , получим:

или .

3. Естественный способ задания движения (рис. 3).

В этом случае задаются:

2)начало отсчета на траектории,

3) положительное направление отсчета,

4)закон изменения дуговой координаты: .

Этим способом удобно пользоваться, когда траектория точки заранее известна.

2. Скорость и ускорение точки

Рассмотрим перемещение точки за малый промежуток времени (рис. 4):

.

Тогда − средняя скорость точки за промежуток времени .

Скорость точки в данный момент времени находится как предел средней скорости при :

.

Скорость точки − это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета.

Вектор скорости направлен по касательной к траектории точки в сторону движения.

Среднее ускорение характеризует изменение вектора скорости за малый промежуток времени (рис. 5).

Ускорение точки в данный момент времени находится как предел среднего ускорения при :

.

Ускорение точки − это мера изменения ее скорости, равная производной по времени от скорости этой точки или второй производной от радиус-вектора точки по времени .

.

Ускорение точки характеризует изменение вектора скорости по величине и направлению. Вектор ускорения направлен в сторону вогнутости траектории.

3. Определение скорости и ускорения точки при координатном способе задания движения

Связь векторного способа задания движения и координатного дается соотношением

(рис. 6).

Из определения скорости:

.

Проекции скорости на оси координат равны производным соответствующих координат по времени

, , . .

Модуль и направление скорости определяются выражениями:

,

.

Точкой сверху здесь и в дальнейшем обозначается дифференцирование по времени

Из определения ускорения:

.

Проекции ускорения на оси координат равны вторым производным соответствующих координат по времени:

, , .

Модуль и направление ускорения определяются выражениями:

,

, , .

4 Скорость и ускорение точки при естественном способе задания движения

4.1 Естественные оси.

Определение скорости и ускорения точки при естественном способе задания движения

Естественные оси (касательная, главная нормаль, бинормаль) − это оси подвижной прямоугольной системы координат с началом в движущейся точке. Их положение определяется траекторией движения. Касательная (с единичным вектором ) направлена по касательной в положительном направлении отсчета дуговой координаты и находится как предельное положение секущей, проходящей через данную точку (рис.9). Через касательную проходит соприкасающаяся плоскость (рис. 10), которая находится как предельное положение плоскости p при стремлении точки M1 к точке M. Нормальная плоскость перпендикулярна касательной. Линия пересечения нормальной и соприкасающейся плоскостей − главная нормаль. Единичный вектор главной нормали направлен в сторону вогнутости траектории. Бинормаль (с единичным вектором ) направлена перпендикулярно касательной и главной нормали так, что орты , и образуют правую тройку векторов. Координатные плоскости введенной подвижной системы координат (соприкасающаяся, нормальная и спрямляющая) образуют естественный трехгранник, который перемещается вместе с движущейся точкой, как твердое тело. Его движение в пространстве определяется траекторией и законом изменения дуговой координаты.

Из определения скорости точки

,

где , − единичный вектор касательной.

, .

Алгебраическая скорость − проекция вектора скорости на касательную, равная производной от дуговой координаты по времени. Если производная положительна, то точка движется в положительном направлении отсчета дуговой координаты.

Из определения ускорения

,

− переменный по направлению вектор и

.

Производная определяется только видом траектории в окрестности данной точки, при этом, вводя в рассмотрение угол поворота касательной, имеем , где − единичный вектор главной нормали, − кривизна траектории, − радиус кривизны траектории в данной точке.

Таким образом ,

т.е. вектор ускорения раскладывается на две составляющие – касательное и нормальное ускорения , , ,

где − алгебраическое значение касательного ускорения (проекция вектора ускорения на касательную) характеризует изменение скорости по величине; − нормальное ускорение (проекция вектора ускорения на нормаль) характеризует изменение скорости по направлению. Вектор ускорения всегда лежит в соприкасающейся плоскости, проекция ускорения на бинормаль равна нулю ( ) .

student-madi.ru

Координатный способ задания движения точки

Пример. Движение точки в плоскости Oxy задано уравнениями (x,y — в метрах; t — в секундах):

Определить траекторию движущейся точки, а также ее скорость и ускорение в момент времени t1 = 1(c).

Решение. Для определения траектории исключаем из уравнений движения время t и находим уравнение траектории в виде, дающем зависимость между координатами x и y движущейся точки.

Из первого уравнения находим t = x / 3 и, подставляя это выражение для t во второе уравнение, получаем y = 2x 2 / 9. Следовательно, траекторией точки является парабола с вершиной в начале координат О.

В заданный момент времени t1 = 1(c) точка имеет координаты x1 = x(t1) = 3 (м), y1 = y(t1) = 2 (м).

Определяем проекции и модуль скорости точки в момент времени t1 = 1(c):

vx = = (3t) · = 3;

vy = = (2t 2 ) · = 4t; vy(t1) = 4 (м/с);

v(t1) =( vx 2 + vy 2 ) = ( 3 2 + 4 2 ) = 5 (м/с).

Определяем проекции и модуль ускорения точки в момент времени t1 = 1(c):

ax = x = (3) · = 0;

ay = y = (4t) · = 4;

a(t1) =( ax 2 + ay 2 ) = | ay | = 4 (м/с 2 ).

Векторы v и a изображаем на рисунке в выбранном масштабе.

de.ifmo.ru

Теоретическая механика:
Кинематика точки

Смотрите также решения задач по теме «Кинематика точки» в онлайн решебниках Яблонского, Мещерского, Чертова (с примерами и методичкой для заочников), Иродова и Савельева.

В этой главе в основном рассмотрены методы решения задач, в которых закон движения точки выражен так называемым естественным способом: уравнением s=f(t) по заданной траектории *.

* Решения задач, в которых закон движения задан координатным способом, рассмотрены в конце главы (§ 31).

В этом случае главными параметрами, характеризующими движение точки но заданной траектории, являются: s – расстояние от заданного начального положения и t – время.

Величина, характеризующая в каждый данный момент времени направление и быстроту движения точки, называется скоростью (v на рис. 192). Вектор скорости всегда направлен вдоль касательной в ту сторону, куда движется точка. Числовое значение скорости в любой момент времени выражается производной от расстояния по времени:
v = ds/dt или v = f'(t).

Ускорение a точки в каждый данный момент времени характеризует быстроту изменения скорости. При этом нужно отчетливо понимать, что скорость – вектор, и, следовательно, изменение скорости может происходить по двум признакам: по числовой величине (по модулю) и по направлению.

Быстрота изменения модуля скорости характеризуется касательным (тангенсальным) ускорением at – составляющей полного ускорения a, направленной по касательной к траектории (см. рис. 192).

Числовое значение касательного ускорения в общем случае определяется по формуле
at = dv/dt или at = f»(t).

Быстрота изменения направления скорости характеризуется центростремительным (нормальным) ускорением an – составляющей полного ускорения a, направленного по нормали к траектории в сторону центра кривизны (см. рис. 192).

Числовое значение нормального ускорения определяется в общем случае по формуле
an = v 2 /R,
где v – модуль скорости точки в данный момент;
R – радиус кривизны траектории в месте, где находится точка в данный момент.

После того как определены касательное и нормальное ускорения, легко определить и ускорение a (полное ускорение точки).

Так как касательная и нормаль взаимно перпендикулярны, то числовое значение ускорения а можно определить при помощи теоремы Пифагора:
a = sqrt(at 2 + an 2 ).

Направление вектора a можно определить, исходя из тригонометрических соотношений, по одной из следующих формул:
sin α = an/a; cos α = at/a; tg α = an/at.

Но можно сначала определить направление полного ускорения a использовав формулу tg α = an/at,
а затем найти числовое значение a:
a = an/sin α или a = at/cos α.

Касательное и нормальное ускорения точки являются главными кинематическими величинами, определяющими вид и особенности движения точки.

Наличие касательного ускорения (at≠0) или его отсутствие (at=0) определяют соответственно неравномерность или равномерность движения точки.

Наличие нормального ускорения (an≠0) или его отсутствие (an=0) определяют криволинейность или прямолинейность движения точки.

Движение точки можно классифицировать так:
а) равномерное прямолинейное (at = 0 и an = 0);
б) равномерное криволинейное (at = 0 и an ≠ 0);
в) неравномерное прямолинейное (at ≠ 0 и an = 0);
г) неравномерное криволинейное (at ≠ 0 и an ≠ 0).

Таким образом, движение точки классифицируется по двум признакам: по степени неравномерности движения и по виду траектории.

Степень неравномерности движения точки задана уравнением s=f(t), а вид траектории задается непосредственно.

§ 27. Равномерное прямолинейное движение точки

Если at=0 и an=0, то вектор скорости остается постоянным (v=const), т. е. не изменяется ни по модулю, ни по направлению. Такое движение называется равномерным прямолинейным.

Уравнение равномерного движения имеет вид
(а) s = s0 + vt
или в частном случае, когда начальное расстояние s0=0,
(б) s = vt.

В уравнение (а) входит всего четыре величины, из них две переменные: s и t и две постоянные: s0 и v. Поэтому в условии задачи на равномерное и прямолинейное движение точки должны быть заданы три любые величины.

При решении задач необходимо выяснить все заданные величины и привести их к одной системе единиц. При этом нужно заметить, что как в системе МКГСС (технической), так и в СИ единицы всех кинематических величин одинаковы: расстояние s измеряется в м, время t – в сек, скорость v – в м/сек.

§ 28. Равномерное криволинейное движение точки

Если at = 0 и an ≠ 0, то модуль скорости остается неизменным (точка движется равномерно), но ее направление изменяется и точка движется криволинейно. Иначе, при равномерном движении по криволинейной траектории точка имеет нормальное ускорение, направленное по нормали к траектории и численно равное
an = v 2 /R,
где R – радиус кривизны траектории.

В частном случае движения точки по окружности (или по дуге окружности) радиус кривизны траектории во всех ее точках постоянный:
R = r = const,
а так как и числовое значение скорости постоянно, то
an = v 2 /r = const.

При равномерном движении числовое значение скорости определяется из формулы
v = (s — s0)/t или v = s/t.

Если точка совершит полный пробег по окружности, то путь s равен длине окружности, т. е. s = 2πr = πd (d = 2r – диаметр), а время равно периоду, т. е. t = T. Выражение скорости примет вид
v = 2πr/T = πd/T.

§ 29. Равнопеременное движение точки

Если вектор at=const (касательное ускорение постоянно как по модулю, так и по направлению), то an=0. Такое движение называется равнопеременным и прямолинейным.

Если же постоянным остается только числовое значение касательного уравнения
at = dv/dt = f'(t) = const,
то an≠0 и такое движение точки называется равнопеременным криволинейным.

При |at|>0 движение точки называется равноускоренным, а при |at| 2 / 2.

Здесь s0 – расстояние точки от исходного положения в момент начала отсчета; v0 – начальная скорость и at – касательное ускорение – величины численно постоянные, a s и t – переменные.

Числовое значение скорости точки в любой момент времени определяется из уравнения
(2) v = v0 + att.

Уравнения (1) и (2) являются основными формулами равнопеременного движения и они содержат шесть различных величин: три постоянные: s0, v0, at и три переменные: s, v, t.

Следовательно, для решения задачи на равнопеременное движение точки в ее условии должно быть дано не менее четырех величин (систему двух уравнений можно решить лишь в том случае, если они содержат два неизвестных).

Если неизвестные входят в оба основных уравнения, например, неизвестны at и t, то для удобства решения таких задач выведены вспомогательные формулы:

после исключения at из (1) и (2)
(3) s = s0 + (v + v0)t / 2;

после исключения t из (1) и (2)
(4) s = s0 + (v 2 — v0 2 ) / (2at).

В частном случае, когда начальные величины s0=0 и v0=0 (равноускоренное движение из состояния покоя), то получаем те же формулы в упрощенном виде:
(5) s = att 2 / 2;
(6) v = att;
(7) s = vt / 2;
(8) s = v 2 / (2at).

Уравнения (5) и (6) являются основными, а уравнения (7) и (8) – вспомогательными.

Равноускоренное движение из состояния покоя, происходящее под действием только силы тяжести, называется свободным падением. К этому движению применимы формулы (5)–(8), причем
at = g = 9,81 м/сек 2 ≈ 9,8 м/сек 2 .

§ 30. Неравномерное движение точки по любой траектории


§ 31. Определение траектории, скорости и ускорения точки, если закон ее движения задан в координатной форме

Если точка движется относительно некоторой системы координат, то координаты точки изменяются с течением времени. Уравнения, выражающие функциональные зависимости координат движущейся точки от времени, называют уравнениями движения точки в системе координат (см. § 51, п. 2 в учебнике Е. М. Никитина).

Движение точки в пространстве задается тремя уравнениями:
x = f1(t);
(1) y = f2(t);
z = f3(t);

Движение точки в плоскости (рис. 203) задается двумя уравнениями:
(2) x = f1(t);
y = f2(t);

Системы уравнений (1) или (2) называют законом движения точки в координатной форме.

Ниже рассматривается движение точки в плоскости, поэтому используется только система (2).

Если закон движения точки задан в координатной форме, то:

а) траектория плоского движения точки выражается уравнением
y = F(x),
которое образуется из данных уравнений движения после исключения времени t;

б) числовое значение скорости точки находится из формулы
v = sqrt(vx 2 + vy 2 )
после предварительного определения проекции (см. рис. 203) скорости на оси координат
vx = dx/dt и vy = dy/dt;

в) числовое значение ускорения находится из формулы
a = sqrt(ax 2 + ay 2 )
после предварительного определения проекций ускорения на оси координат
ax = dvx/dt и ay = dvy/dt;

г) направления скорости и ускорения относительно осей координат определяются из тригонометрических соотношений между векторами скорости или ускорения и их проекциями.

§ 32. Кинематический способ определения радиуса кривизны траектории

При решении многих технических задач возникает необходимость знать радиус кривизны R (или 1/R – кривизну) траектории. Если задано уравнение траектории, то радиус ее кривизны в любой точке можно определить при помощи дифференциального исчисления. Используя уравнения движения точки в координатной форме, можно определять радиус кривизны траектории движущейся точки без непосредственного исследования уравнения траектории. Определение радиуса кривизны траектории при помощи уравнений движения точки в координатной форме называется кинематическим способом. Этот способ основан на том, что радиус кривизны траектории движущейся точки входит в формулу
an = v 2 /R,
выражающую числовое значение нормального ускорения.

Скорость v точки определяется по формуле
(б) v = sqrt(vx 2 + vy 2 ).

Числовое значение нормального ускорения an входит в выражение полного ускорения точки
a = sqrt(an 2 + at 2 ),
откуда
(в) an = sqrt(a 2 — at 2 ),
где квадрат полного ускорения
(г) a 2 = ax 2 + ay 2
и касательное ускорение
(д) at = dv/dt.

Таким образом, если закон движения точки задан уравнениями
x = f1(t);
y = f2(t),
то при определении радиуса кривизны траектории рекомендуется произвести следующее:

1. Продифференцировав уравнения движения, найти выражения проекций на оси координат вектора скорости:
vx = f1‘(t);
vy = f2‘(t).

2. Подставив в (б’) выражения vx и vy, найти v 2 .

3. Продифференцировав по t уравнение (б), полученное непосредственно из (б’), найти касательное ускорение at, а затем at 2 .

4. Продифференцировав вторично уравнения движения, найти выражения проекций на оси координат вектора ускорения
ax = f1»(t) = vx‘;
ay = f2»(t) = vy‘.

5. Подставив в (г) выражения ax и ay, найти a 2 .

6. Подставить в (в) значения a 2 и at 2 и найти an.

7. Подставив в (а) найденные значения v 2 и an, получить радиус кривизны R.

exir.ru

Смотрите так же:

  • Юристы online Юридическая консультация юриста бесплатно онлайн Информация Описание: Юридическая консультация бесплатно онлайн, Консультация юриста бесплатно онлайн, юридическая помощь и бесплатные консультации от опытных юристов онлайн. ВНИМАНИЕ!1 […]
  • Представление на пенсию бланк в рб Представление на пенсию бланк в рб 1. По трудовой книжке Дата заполнения трудовой книжки «__» _______ 19__ г. 2. Работа в колхозе 3. По другим документам ИТОГО стажа по другим документам ___________ лет __________ мес. ___________ дн. […]
  • Правила поведения во время грозы презентация Окружающий мир 3 класс 3 класс. Правила поведения во время грозы Находясь в доме, выключите радио и телевизор, отключите телефон Если вы едете в машине, - презентация Презентация была опубликована 3 года назад пользователемГалина Ососкова […]
  • Закон 118-з Закон Нижегородской области от 5 сентября 2012 года №118-З "О внесении изменений в Закон Нижегородской области "Об обеспечении чистоты и порядка на территории Нижегородской области" Принят Законодательным Собранием 30 августа 2012 […]
  • Нотариус бела куна Нотариальная палата Санкт-Петербурга Нотариус Абрамова Людмила Григорьевна. Нотариальная контора График работы: ПН-ВС 9:00-21:00 +7 (812) 325-41-48 Нотариус Аверьянов Андрей Сергеевич. Нотариальная контора +7 (812) 331-39-90 Нотариус […]
  • Основные законы изобразительного искусства Обобщающий урок по изучению основных законов изобразительного искусства Учитель Величко Т. Н. - презентация Презентация была опубликована 4 года назад пользователемЖанна Мишагина Похожие презентации Презентация по предмету "МХК, ИЗО, […]